Expanded clay LWA (Leca®) in CEA

Lightweight fill and thermal insulation products for civil engineering applications. Installation and structural quality control on site.

May 2009
Table of contents

1 Scope ... 4
2 Terms, definitions, symbols, units and abbreviated terms .. 5
3 Applications .. 7
4 Execution and Control .. 9
5 References .. 17
Annex A Marking and labelling ... 19
Annex B Additional delivery control.. 20
Foreword

The goal and purpose of this Technical report has been to present the current best practice and recommendations used in the maxit countries in Europe concerning in-situ quality control to ensure a correct and proper execution of civil engineering applications of Light Expanded Clay Aggregates (Leca®).

The basic material properties shall be tested and declared as stated in prEN 15732 Light weight fill and thermal insulation products for civil engineering applications (CEA). Expanded clay lightweight aggregate products (LWA). /1/

This report provides general recommendations and has no legal status. National standards, recommendations, instructions and guidance given in the specific projects have to be followed.
1 Scope

This technical report provides recommendations for the material delivery control on site, storage and handling, construction procedures and quality control of the installed products. The required product characteristics and procedures for testing, marking and labelling of expanded clay LWA (LECA®) for this application is given in prEN 15732 /1/.

This technical report contains 2 annexes:

- Annex A (informative) – Marking and labelling
- Annex B (informative) – Delivery Control

This document covers the use of expanded clay LWA (LECA®) in Civil Engineering Applications excluding the use as thermal insulation in and under buildings which are covered by European Standard EN 14063-1 /2/. The technical report intends to cover the use of expanded clay LWA (Leca®) as lightweight fill, drainage and insulation materials in e.g. embankments for roads, railways, and other traffic areas, as lightweight backfill e.g. for retaining walls, sheet pile quay structures or as foundation for structures

This technical report gives recommendations for quality control of the expanded clay LWA (Leca®) product delivered on site, quality control of the construction work and for quality control of the structure during the construction and after completion.
2 Terms, definitions, symbols, units and abbreviated terms

2.1 Terms and definitions

For the purposes of this technical report, the following definitions apply.

2.1.1 Expanded clay lightweight aggregate (LECA®):

Insulation material or product composed of lightweight granular material having a cellular structure formed by expanding clay minerals by heat.

2.1.2 Delivery in bags:

Installing loose-fill expanded clay LWA (LECA®) directly by pouring from the bag or installing the bag with expanded clay LWA (LECA®) directly.

2.1.3 Delivered loose material:

Loose-fill expanded clay delivered by truckload and installed directly from the truck by tipping or by blown delivery.

2.1.4 Blown (pneumatic) delivery:

Loose-fill expanded clay LWA (Leca®) applied or installed by a pneumatic unit.

2.1.5 Rounded particle:

Material consisting of expanded clay LWA (Leca®) particles produced with 50% or less of its surface crushed or broken /3/.

2.1.6 Crushed or broken material:

Material consisting of expanded clay LWA (Leca®) particles produced with more than 50% of its surface crushed or broken /3/.

2.1.7 Compaction:

The mechanical compression (e.g. by vibrator) of the installed layers.

2.1.8 Long term deformation:

The decrease of installed expanded clay LWA (Leca®) thickness with time, due to e.g. external loads, environmental loads or creep, expressed as a percentage of the initial installed thickness.

2.1.9 Design thickness:

Layer thickness after deformation and/or compaction as specified by the designer.
2.1.10 Installed thickness:

Layer thickness as installed by the installer including compaction if prescribed.

2.1.11 Structural elements:

The expanded clay LWA (LECA®) in an embankment is commonly covered with a capping layer of granular materials as lateral support. For road embankment there is also a pavement layer on top typically consisting of a sub-base and a top layer.

Expressions of the structural layers used in this report are presented in Figure 1.

![Figure 1 Expressions on structural layers in expanded clay LWA (LECA®) structures used in this report](image)

Alternatively to the slope capping layer a geotextile can be used as a wrap around solution for the lateral support of the edge of the embankment as illustrated in Figure 2.

![Figure 2 Embankment with layered structure and geotextile wrap around at the edges](image)
3 Applications

Light weight aggregates can be used both for insulation purposes and to reduce settlement and improve stability of fills on soft subsoil. Some examples of applications are presented in Figures 3 to 7.

![Figure 3 Expanded clay LWA (LECA®) used for load compensation to reduce settlement](image)

Figure 3 Expanded clay LWA (LECA®) used for load compensation to reduce settlement

![Figure 4 Expanded clay LWA (LECA®) to reduce weight and increase stability for fill in the sea](image)

Figure 4 Expanded clay LWA (LECA®) to reduce weight and increase stability for fill in the sea

![Figure 5 Expanded clay LWA (LECA®) as lightweight backfill to reduce weight and earth pressure to reduce differential settlement and horizontal load for a bridge foundation](image)

Figure 5 Expanded clay LWA (LECA®) as lightweight backfill to reduce weight and earth pressure to reduce differential settlement and horizontal load for a bridge foundation
Figure 6 Expanded clay LWA (LECA®) as frost insulation in railroad embankment

Figure 7 Expanded clay LWA (LECA®) used to reduce earth pressure on sheet pile wall for quay structure
4 Execution and Control

4.1 General

The installer shall use an expanded clay LWA (LECA®) product that complies with prEN 15732 /1/.

The installer shall inspect the construction site in accordance with the requirements of the designer, Eurocode 7 and National Regulations in order to determine whether it is suitable for application of the product.

4.2 Delivery Control

The purpose of the delivery control is to verify that the material delivered on site is in accordance with the project specifications. The normal delivery control includes a checking of the CE-marking of the product and accompanying documents.

If additional delivery control is required, including acceptance criteria, it shall be agreed upon before deliverance of expanded clay LWA (LECA®). This can be done according to appendix B.

4.2.1 Marking and labelling

The marking and labelling of the delivered material shall be checked to verify that the product is in accordance with the project specifications. The marking of the delivered material shall be in accordance with prEN 15732 /1/. An example of marking of the product is shown in appendix A. The accompanying document shall be made available on request and provide the required characteristics in accordance with prEN 15732 /1/.

4.3 Handling and storage

Handling of the expanded clay LWA (LECA®) can be done using normal construction equipment, but care should be taken to avoid excessive impact on the material that may cause crushing of the aggregates. Care should be taken to avoid mixing with other materials during storing and handling. The material can be stored as conventional fill materials.

4.4 Construction

The construction control shall ensure that the material is installed in a proper way without being subjected to treatment that may reduce the intended function of the structure.

4.4.1 Preparatory work

The sub formation does not need levelling beyond the normal requirements for sub formation levelling.

The preparation of the sub formation for expanded clay LWA (LECA®) fills includes normal cleaning of the construction site (removal of e.g. tree roots, shrubs and other obstacles). If construction is taking place under winter conditions all snow and ice should be removed from the
sub formation. When prescribed, a geotextile should be installed as a separator between the subgrade and the expanded clay LWA (LECA®)-fill.

Excess water in the excavation pit should be avoided and pumped out to acceptable levels. A high water level could cause problems with uplift, and reduce the effect of compaction.

Note: High water levels in an uncovered expanded clay LWA (LECA®) fill can be dangerous and should be avoided. Floating expanded clay LWA (LECA®) could make the fill surface appear stable, but machines or workers going onto the fill may sink down into the water.

4.4.2 Installation

The material can be delivered by tipping from the truck or delivery and installation by blowing (Figure 8). The expanded clay LWA (LECA®) should be installed in layers of maximum 1 m after the installation of lateral support (supporting embankment or wrap around geotextile before compaction). Truck driving directly on top of the expanded clay LWA (LECA®) should be avoided. The material can be spread with a back excavator, dozer or other similar equipment (Figures 9 and 10). Spreading of the material can also favourably be combined with the compaction procedure.

Figure 8 Installation by blowing

Figure 9 Spreading by a back excavator

Installation by blowing directly into the place can be useful at construction sites with difficult access conditions. It is possible to blow expanded clay LWA (LECA®) up to 100 m horizontally or 20 m vertically and in some circumstances even further. Installation by blowing will in most cases result in an initial compaction of the material thus reducing the need for additional mechanical compaction after the installation.

Expanded clay LWA (LECA®) can also be installed from big bags. The big bags commonly contain about 1 m³ material.

Construction traffic directly on the expanded clay LWA (LECA®) should be avoided with construction equipment having a belt or tire pressure higher than 50 kN/m². Traffic ability for the construction equipment on the expanded clay LWA (LECA®) fill can be achieved by the construction of an access road on top of the expanded clay LWA (LECA®), as seen in figure 11. A separating geotextile should be used between the expanded clay LWA (LECA®) fill and the
access road base layer. Provided the use of conventional trucks (axle load less than 150 kN) the access roads can be designed according to conventional recommendations. A general recommendation for total road base thickness for the access road is 300 mm unbound material above the expanded clay LWA (LECA®). This is sufficient to provide required bearing capacity and avoid crushing of the expanded clay LWA (LECA®). By the use of stabilised (cement or bitumen) material it is possible to reduce the required thickness of the access road.

The base layer material for the access road should be of sufficient quality (e.g. gravel, crushed rock, crushed concrete, crushed masonry or binder improved soil according to national requirements for road base materials). Access for construction equipment may also be by the use of temporary measures like steel plate, wooden lodge elements etc.

![Figure 10 Spreading by dozer](image1)

![Figure 11 Access road on top of expanded clay LWA (LECA®)-fill](image2)

4.4.3 Compaction

Generally embankments with expanded clay LWA (LECA®) are used in areas with soft and compressible subsoil. It may be difficult to obtain a sufficient compaction of fill materials on this type of subsoil due to lack of response from the subsoil. Accordingly the compaction of expanded clay LWA (LECA®) fill in the embankment and the pavement should be considered carefully to obtain a good result.

For the most commonly used rounded material the contractor should be aiming at a compaction of about 10% in relation to the loose fill state. When installing the material by blowing an initial compaction of maximum 5% is possible, depending on blowing pressure and installation procedure. Hence the need for additional mechanical compaction is reduced. The rate of compaction can be controlled according to section 4.5.3.

Note: For some specific crushed materials (with or without fines) the amount of compaction can be significantly higher (up to 25%).

Over-compaction of the material (compaction leading to extensive crushing) should be avoided, especially if the material is used as frost insulation. This will increase the required volume and reduce the frost insulation properties.

Over-compaction will also reduce the volume of the material and increase the need for material on site compared to the theoretical volume.
Compaction of expanded clay LWA (LECA®) requires less energy than conventional material, accordingly requirements for compaction equipment and recommendations for layer thickness to achieve a proper compaction is not similar to conventional materials. Compaction of the expanded clay LWA (LECA®) fill is done in layers with a maximum thickness of 1 m. Proper compaction of the edge of the fill requires proper lateral support. This can be achieved either by a slope capping or by a geotextile wrap around of the edge. The equipment and procedure for compaction should be related to the type of structure. Compaction of small areas and close to structures will require smaller and lighter equipment than the compaction of large areas e.g. for a road or railway embankment.

4.4.3.1 Compaction directly on layers of expanded clay LWA (LECA®)-fill

As the required energy is less than conventional materials it is not recommended to use heavy equipment or equipment with high contact stress levels. Generally the contact stress (belt pressure) should be less than 50 kN/m². Conventional compaction equipment (e.g. vibrating rollers) should not be used to compact directly on the expanded clay LWA (LECA®)-fill as this cause the machinery to sink into the fill.

Some recommendations on equipment characteristics and procedures for the compaction directly on the expanded clay LWA (LECA®)-fill are given in Table 1.

Table 1 Recommendations on equipment and procedures for compaction directly on expanded clay LWA (LECA®) fill

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracked vehicle (dozer, excavator)</td>
<td>Preferably compaction is combined with the installation</td>
</tr>
<tr>
<td></td>
<td>Contact stress < 50 kN/m²</td>
</tr>
<tr>
<td>Vibrating plate</td>
<td>Especially convenient close to other structures such as bridge abutments and for compaction of limited areas. Use of extended plate is recommended to avoid the plate sinking down in the fill.</td>
</tr>
<tr>
<td></td>
<td>Typical Weight 50-140 kg, width 50-80 cm, contact stress < 5 kN/m², frequency 75-100 Hz</td>
</tr>
</tbody>
</table>

Examples of compaction by the use of a dozer and vibrating plate are presented in Figures 12 and 13.
Recommendations to achieve proper compaction directly on the expanded clay LWA (LECA®)-layer are given in Figure 14. Often the specified compaction is reached during installation and no further compaction needs to be carried out. The optimum compaction varies with type of material and data for optimum compaction should be provided by the manufacturer.

Figure 14 Recommendations on required compaction effort for expanded clay LWA (LECA®)-fill to achieve the intended level of compaction (vibrating plate 80 kg, vibrating plate 140 kg and dozer)
4.4.3.2 Final compaction of capping layer on top of expanded clay LWA (LECA®) fill

It is of high importance for the total quality of the whole structure to obtain a proper compaction of the capping layer on top of the expanded clay LWA (LECA®). The compaction of the capping layer can be done with conventional appropriate equipment and procedures to achieve a proper compaction of all parts of the structure.

The compaction of unbound layers on top of expanded clay LWA (LECA®) should preferably be carried out with a vibrating oscillating roller with the possibility to adjust amplitude and/or frequency. The roller weight and compaction energy should be carefully considered based on the type of material and thickness of the base layer. Compaction energy should be limited to avoid risk of crushing of the expanded clay LWA (LECA®)-material underneath, and to obtain an optimum compaction effect of the base layer.

Compaction of the capping layer is commonly performed with vibrating roller equipment, typically weight 15-50 kN (Figure 16).

To obtain maximum effect of the compaction of the capping layer on top of the expanded clay LWA (LECA®) it is recommended to use vibrating equipment with the possibility to modify amplitude and the frequency and to perform the compaction in 3 steps.

1. Compaction of the sub-base layer with high amplitude and high frequency
2. Compaction of base layer with low amplitude and high frequency
3. Additional compaction with low amplitude and low frequency followed by a levelling compaction (without vibration)

4.5 Structural Quality control before installation of capping layer

The structural quality control is intended to verify that the material has been installed in a proper way and is fulfilling the intended function in the structure.

4.5.1 Visual inspection

The surface of the expanded clay LWA (LECA®) should be inspected visually to check for possible exceptions from proper execution, e.g. clear deviation from theoretical profile, excessive crushing of materials etc. If there are clear indications of deviations samples should be taken from the field according to annex B to control the material in the laboratory.

4.5.2 Installed thickness

The installed thickness and variations should be according to the project specifications and national requirements. Installed thickness is controlled by surface levelling, test pit etc.
4.5.3 Degree of compaction

The degree of compaction can be controlled by levelling, by relative volume control or by installed density.

Levelling should be performed on top of the expanded clay LWA (LECA®) layer and the degree of compaction should be estimated as the average deformation from at least 5 measuring points for each 1000 m² surface. It should be noted that possible changes in the fill profile should be evaluated as this will influence the measurements of compaction based on levelling only.

The relative compaction can be controlled on samples taken in the field. The samples should be minimum 5 dm³ and can be taken by the use of a sampling tube that is driven into the fill mechanically. Sampling of expanded clay LWA (LECA®) material can preferably be done by the use of a sampling tube combined with a vacuum cleaner device as seen in Figure 17. The method is described in reports from the Swedish Testing Institute /4/. The relative compaction can be controlled by comparing the volume of loose material from the sampling with the volume of the material in the tube in situ.

![Figure 17 Sampling by vacuum cleaner device](image)

The vacuum cleaner device can also be used for taking samples for further evaluation in the laboratory on installed density, moisture content etc. This is not commonly done, but can be relevant for more excessive control when required. The method is described in reports from the Swedish Testing Institute /5/.

4.5.4 Plate load test directly on expanded clay LWA (LECA®)

If static or dynamic plate load tests are performed directly on the expanded clay LWA (LECA®) layer it is necessary to use a modified load plate with increased diameter (minimum 600 mm). Testing procedures and evaluation of the results should be based on national experience with correlation with the bearing capacity of expanded clay LWA (LECA®) from field experience with similar structures.
4.6 Structural Quality control after installation of capping layer

4.6.1 Bearing capacity/stiffness measured on top of the capping layer

It is recommended that the measurements of the bearing capacity/stiffness are performed after the installation of a layer of minimum 300 mm or granular material on top of the expanded clay LWA (LECA®) fill. For stabilized materials less cover layer thickness may be used.

4.6.1.1 Static plate bearing test

The bearing capacity/stiffness may be measured by a plate load tests on the capping layer on top of the expanded clay LWA (LECA®) fill according to DIN 18 134/6/. The results should be based on the average result from minimum 2 tests per 1000 m² surface.

It should be noted that the result in this case will reflect the stiffness and bearing capacity of the entire structure, not the expanded clay LWA (LECA®) layer alone.

4.6.1.2 Dynamic plate bearing test

The method is basically using the same equipment as for static plate load tests, but with the application of a cyclic load. The method is not commonly used for verification of bearing capacity, but is used for development and research projects. An example of the use of this method and a summary of some previous studies is presented in Tingle & Jersey (2005)/7/.

It should be noted that the result in this case will reflect the stiffness and bearing capacity of the entire structure, not the expanded clay LWA (LECA®) layer alone.

4.6.1.3 Falling weight deflectometer

Falling weight deflectometer will provide information on the elastic stiffness of the structure and possibly each of the layers in the structure/8/.

It should be noted that the result in this case will reflect the stiffness and bearing capacity of the entire structure, not the expanded clay LWA (LECA®) layer alone.

4.7 Other methods not adopted

4.7.1 CBR

CBR (California Bearing Ratio) is generally used for evaluation of bearing capacity of granular materials in a number of countries. The method has proven not to be suitable for the use of controlling the bearing capacity of expanded clay LWA (LECA®)-material.

4.7.2 Other methods

Some other methods which may prove to be useful, but where relevant experience is still limited are:

- Compaction response on compaction equipment
• Light weight falling weight equipment
• CPT
• Loadman
• GeoGauge

These methods need to be evaluated more before they can be taken into use for general quality control of expanded clay LWA (LECA®)-materials.

5 References

/1/ prEN 15732 Light weight fill and thermal insulation products for civil engineering applications (CEA) - Expanded clay lightweight aggregate products (LWA).

/2/ EN 14063-1 Thermal insulating products for buildings. Part 1: In situ formed expanded clay lightweight aggregate products

/3/ EN933-5 Test for geometrical properties of aggregates. Part 5: Determination of percentage of crushed and broken surfaces in coarse aggregate particles.

/4/ SP Method 3751 LEHA method: Determining the compaction and bulk density of expanded clay lightweight aggregate embankments – simplified method.

/5/ SP Method 3751 LEHA method: Determining the compaction and bulk density of expanded clay lightweight aggregate embankments.

/6/ DIN 18134 Determining the deformation and strength characteristics of soil by the plate loading test.

/8/ COST 336 Falling Weight Deflectometer

/9/ EN 932-1 Tests for general properties of aggregates. Part 1: Methods for sampling

/10/ EN 1097-3 Tests for mechanical and physical properties of aggregates. Part 3: Methods for determination of loose bulk density and voids

/12/ EN 1097-5 Tests for mechanical and physical properties of aggregates. Part 5: Determination of the water content by drying in a ventilated oven

/13/ EN 932-2 Tests for general properties of aggregates. Part 2: Methods for reducing laboratory samples
Annex A

Marking and labelling

Products conforming to the standard prEN 15732 /1/ shall be clearly marked on the label on the packaging or on an accompanying document with the following information:

- Product name or other identifying characteristic
- Reaction to fire class
- Designation code as given in prEN 15732 clause 6

Additional information is normally stated in the accompanying documents:

- Name or identifying mark and address of the manufacturer or his authorised representative
- Date of delivery, manufacturing plant and/or traceability code
- Quantity of material, in m³

It is recommended to make available the complete CE declaration and declaration of conformity on the internet pages of the company. Requested AOC documents for different levels of attestation are listed in Table 2.

Table 2 Requested AOC documents

<table>
<thead>
<tr>
<th>AOC system</th>
<th>EC Declaration of conformity</th>
<th>CE Technical Data sheet</th>
<th>Certificate of Factory Production Control (FPC) with surveillance (EC certification from Notified body)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Product name: <e.g.: LECA® 10/20 >
Article number: <e.g.: 150600>

- Reaction to fire: Euroclass A1
- Designation code: Exp. clay LWA prEN 15732 - LD250 -PS(10-20)

A complete CE declaration and declaration of conformity can be obtained from maxit Group internet-pages. You may also contact your local maxit country for further material information.
Annex B

Additional delivery control

B.1 Sampling

The normal delivery control is performed by checking if the CE-declaration and additional accompanying information are in accordance with the specifications.

If additional delivery control is required, sampling of the material shall be performed according EN 932-1 /9/. Sampling from conical stock piles of Expanded clay LWA (LECA®) should be avoided because it is nearly impossible to follow the instruction given in EN 932-1 /9/, Annex C.

The number of tests and the procedure for sampling shall be agreed upon before delivery and installation. Note that there might be considerable variations in the loose bulk density depending on where the material is taken due to separation during handling of the material.

Recommendation:

The required number of test samples for delivery control on site should be related to the total volume of material delivered. Some general recommendations for delivery control are given in Table 3. The sampling should be done as described in Table 4.

Table 3 Required numbers of tests for delivery control. One test result is the mean value of 3 test specimens

<table>
<thead>
<tr>
<th>Volume delivered (m³)</th>
<th>Loose bulk density /10/</th>
<th>Particle size distribution /11/</th>
<th>Water content /10/, /12/</th>
</tr>
</thead>
<tbody>
<tr>
<td><5000</td>
<td>1 per 1000 m³</td>
<td>1 per 2000 m³</td>
<td>1 per 1000 m³</td>
</tr>
<tr>
<td>>5000</td>
<td>1 per 2000 m³</td>
<td>1 per 4000 m³</td>
<td>1 per 2000 m³</td>
</tr>
</tbody>
</table>

Table 4 Sampling procedures

<table>
<thead>
<tr>
<th>Priority</th>
<th>The test sample is taken:</th>
<th>Sampling according to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority 1</td>
<td>During (loading or) unloading of the truck depending on delivery method</td>
<td>EN 932-1, clause 8.2, 8.3 or 8.6</td>
</tr>
<tr>
<td>Priority 2</td>
<td>From the truck before unloading, or from a front-loader before spreading out</td>
<td>EN 932-1, clause 8.9</td>
</tr>
</tbody>
</table>

The samples shall be taken from minimum 4 different places from one truck load according EN 932-1 /9/, using a sampling tube. The diameter of the sampling tube shall be at least 3 times the largest aggregates (3 x D).

Samples should be taken from at least 5 different truck loads, evenly distributed during delivery.
The volume of sampled material should be at least 30 litres, and handled as composite samples. The total volume should be divided in two equal portions (in accordance with EN 932-2 /13/), one for each party.

From these samples the loose bulk density (and water content when required) and particle size distribution shall be performed according /10/ and /11/.

B.2 Loose bulk density and moisture content

When determining the loose bulk density in accordance with EN 1097-3 /10/, the moisture content is also recorded. If only the moisture content shall be measured, EN 1097-5 /12/ can be applied

B.3 Particle size distribution

Particle size distribution shall be measured in accordance with EN 933-1 /11/. This standard is a general standard for normal weight aggregates, and is not directly applicable for expanded clay lightweight aggregates.

The recommendation is to use the amount of material as listed in table 5. The volumes for other aggregate sizes are calculated by interpolation.

<table>
<thead>
<tr>
<th>Maximum aggregate size D (mm)</th>
<th>Minimum volume of expanded clay LWA (LECA®) (dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>2.1</td>
</tr>
<tr>
<td>16</td>
<td>1.7</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
</tr>
</tbody>
</table>